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The fabrication of diamond films 
by chemical vapor deposition 
(CVD) has been under develop-

ment for many years now for applica-
tions including hardened surfaces, 
optical windows, and electrodes. The 
solid-state structure of these films has 
a direct impact on the material proper-
ties and, therefore, figures of merit of 

the final product. Crystallinity, single 
or poly, the number of defects, strain, 
and even the crystal face can affect 
performance. Furthermore, the unifor-
mity of such films can affect the overall 
utility of the final product. Therefore, 
analytical methods are needed that 
can characterize the spatially varying 
structure of CVD diamond films.

Application of Raman 
Polarization Selection Rules: 
Heterogeneous Solid-State 
Structure
Micro-Raman spectroscopy is often performed to spatially distinguish 
materials of different chemical composition in solid samples. However, 
there are many instances in which the spatial heterogeneity consists 
not of chemical composition, but of solid-state atomic structure within 
a material of otherwise uniform composition. Diamond films prepared 
by chemical vapor deposition (CVD) on silicon wafers present just 
such a case in which strain, crystallinity, and defects vary spatially. 
An object can appear to be spectrally uniform if one is not aware of 
how the degree of crystallinity, strain, or state (amorphous or crystal-
line) of the matter manifests itself spectroscopically. To access the 
full benefits of micro-Raman spectroscopy, we show how the spatial 
heterogeneity of solid-state structure and the orientation dependence 
of strain in a nominal single crystal of CVD diamond can be character-
ized through the application of Raman polarization selection rules.
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To that end, we used the applica-
tion of Raman polarization selection 
rules for the purpose of simply differ-
entiating single from polycrystalline 
diamond and to probe the extent of 
lattice defects, and thereby the degree 
of disorder, present in a crystal.

Results and Discussion
The first figure displays the theoreti-
cal results for polarization/orientation 
(P/O) Raman backscattering from a di-
amond crystal with the laser beam in-
cident on the (100) face (1). The Raman 
signal is calculated for configurations 
with the polarization analyzer parallel 
and perpendicular as the crystal is ro-
tated in the plane. The experimentally 
obtained P/O micro-Raman diagram 

generated by plotting the peak area 
of the 1333-cm-1 Raman band from a 
Drukker diamond (serving as our ref-
erence) is shown in Figure 2.

The diamond (100) experimental P/O 
plot consists of two sinusoidal functions 
45° out of phase and the plot form is in 
excellent agreement with the calculated 
diagram of Figure 1. However, note 
that calculations predict a maximum 
response at 0° for the perpendicular 
configuration, whereas the parallel con-
figuration is near maximum at 0° for 
the experimentally obtained data. This 
can be understood in terms of the crys-
tal orientation of the calculation com-
pared to the sample angle with respect 
to a laboratory reference frame. The ap-
proximate 50° phase shift between the 
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Figure 1: Calculated results for a P/O micro-Raman backscattering experiment for a 
diamond (100) face.
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experimentally obtained and calculated 
diamond (100) P/O plots is understood 
as a difference in the crystallographic 
starting orientations for data collec-
tion. This illustrates an application of 
P/O micro-Raman spectroscopy for the 
analysis of texture in natural materials 
or fabricated devices. P/O plot phase 
shifts can be used to quantitate the 
degree of crystallographic orientation 
or alignment of different features on a 
micrometer scale relative to a sample 
orientation and coordinate system in 
the laboratory reference frame.

The CVD films consisted of dia-
mond clusters whose edge lengths 
ranged from ~5 µm to 15 µm. The faces 
of the diamonds are square and trian-
gular and presumably correspond to 

the (100) and (111) faces, respectively. 
We performed P/O micro-Raman 
spectroscopy on the isolated square 
faces to demonstrate the utility of this 
technique for the characterization of 
CVD diamond crystallinity. A reflected 
light image of one such square face from 
which P/O micro-Raman spectra were 
obtained is shown in Figure 3.

We obtained P/O micro-Raman 
spectra of diamond films prepared by 
chemical vapor deposition using a 1.6-
mW, 488.0-nm laser beam focused to a 
0.6-µm diameter with an Olympus MS 
Plan 100 (0.95 NA) objective. Raman 
scattered light was collected using the 
same microscope objective (backscat-
tering configuration). An analyzer was 
placed in front of the spectrometer en-
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Figure 2: Experimental results for the P/O micro-Raman backscattering experiment 
with a Drukker diamond (100) face.
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trance slit and configured either par-
allel or perpendicular to the incident 
polarization. Individual spectra were 
collected at 5° rotational increments for 
each analyzer polarization configura-
tion as the sample was rotated within 
the focal plane. The sensitivities of the 

microscope and spectrometer to the 
two, orthogonal polarizations were 
characterized against a depolarized 
white light source. Accordingly, cor-
rections were made to the intensities 
of P/O micro-Raman spectra obtained 
at the corresponding polarizations.

Original orientation

(100)

10 µm

Incident polarization

Figure 3: Reflected light image of CVD diamond from which P/O micro-Raman spectra 
were obtained.
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Figure 4: P/O micro-Raman spectra of a (100) face of CVD diamond the light collection 
analyzer parallel and perpendicular to the incident polarization.
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The P/O micro-Raman spectra (Fig-
ure 4) indicate that the diamond is a 
single crystal that contains substantial 
defects. The P/O micro-Raman spec-
tra manifest the expected sinusoidal 
response for a single-crystal diamond 
rotated in a (100) plane. However, the 
failure of the signal to vanish at the 
minima and the presence of an amor-
phous carbon band at ~1560 cm-1 in-
variant with orientation reveal consid-
erable defects in what is nominally a 
single crystal. The phase of the experi-
mentally obtained P/O diagram with 
respect to the calculated diagram in 
Figure 1 allows crystallographic assign-
ment of the faces as shown in Figure 5.

In addition to the disorder manifest 
in the spectra, orientationally depen-
dent strains can be identified through 
band fitting. The strain-free Raman 
band of diamond appears at 1333 

cm-1. Previous work by other authors 
has demonstrated the crystallographic 
orientational variation of strain in 
diamond films and the use of polar-
ized Raman spectroscopy to detect it 
(2–4). Figure 6 shows two micro-Ra-
man spectra from the perpendicular 
polarization set (Figure 4) separated 
by 5 rotational degrees. Band fitting 
reveals that the relative strain-to-
strain-free components vary with 
the direction of phonon propagation 
through the crystal. Indeed, the three-
dimensional variation of the strain in 
this crystal contributes significantly 
to the deviation of the experimentally 
obtained P/O diagram from one cal-
culated for an ideal crystal.

Conclusion
We have demonstrated through the 
application of Raman polarization 

(011) (011)

(100)

(011) (011)

10 µm

Figure 5: Reflected light image of CVD diamond showing the assignment of crystallographic 
faces based upon the phase of the P/O micro-Raman spectral diagram.
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selection rules that the orientation of 
a crystal can be determined from the 
phase shift of the experimental P/O 
micro-Raman diagram relative to that 
calculated for a particular crystal face. 
Furthermore, the efficacy of the P/O 
micro-Raman method for identifica-
tion of disorder components or de-
fects and the detection of direction-
ally dependent compressive strain 
components in the diamond has been 
demonstrated. 
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Figure 6: P/O micro-Raman spectra separated by 5 rotational degrees. The spectra are 
fitted for strain-free diamond (~ 1334 cm-1) and a strain component.

fects and the detection of direction
ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain ally dependent compressive strain 

calculated for a particular crystal face. 
Furthermore, the efficacy of the P/O 
micro-Raman method for identifica

calculated for a particular crystal face. 
Furthermore, the efficacy of the P/O 
micro-Raman method for identifica

calculated for a particular crystal face. 
Furthermore, the efficacy of the P/O 
micro-Raman method for identifica

calculated for a particular crystal face. 
Furthermore, the efficacy of the P/O 
micro-Raman method for identifica

micro-Raman diagram relative to that 
calculated for a particular crystal face. 
Furthermore, the efficacy of the P/O Furthermore, the efficacy of the P/O 
micro-Raman method for identifica
tion of disorder components or de
micro-Raman method for identifica
tion of disorder components or detion of disorder components or de
fects and the detection of direction
tion of disorder components or de
fects and the detection of direction
tion of disorder components or de
fects and the detection of direction
tion of disorder components or de
fects and the detection of direction
tion of disorder components or de
fects and the detection of direction
tion of disorder components or de
fects and the detection of direction
tion of disorder components or de
fects and the detection of direction




