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The Raman spectra of crystalline and amorphous solids of the same chemical composition can 
be significantly different primarily because of the presence or absence of spatial order and long-
range translational symmetry, respectively. The purpose or goal of this installment of “Molecular 
Spectroscopy Workbench” is to help readers understand the underlying physics that affect the 
Raman spectra of crystalline and amorphous solids. Wave vector, reciprocal space, and the Brillouin 
zone are explained with respect to Raman spectroscopy of solids.

Why Are the Raman Spectra 
of Crystalline and Amorphous 
Solids Different?

Molecular Spectroscopy Workbench

I f you are a chemist, you most likely learned vibrational 
spectroscopy as molecular spectroscopy. That is, you 
learned about the normal vibrational modes of discrete 

molecules—as opposed to solid-state materials—and their 
Raman or infrared activity based upon molecular spectro-
scopic selection rules. Raman spectra of compounds in the 
liquid, or vapor, phase consist of narrow bands whose widths 
depend upon the degree of chemical interaction between the 
molecules. The weaker the chemical interaction, the nar-
rower the band will be. In fact, the bands of a compound 
in the vapor phase will be narrower than those of the same 
compound in the liquid phase for that very reason (1). The 
broad infrared absorption and Raman bands of water dem-
onstrate the effect of hydrogen bonding and the result of dif-
ferent degrees of chemical interaction between the molecules 
in a neat liquid. The breadth of the O-H stretching modes 
in particular is a manifestation of the distribution of vibra-

tional energy states as a result of these many and different 
chemical interactions.

Interpreting the Raman spectra of compounds, or mate-
rials in the solid state, requires the knowledge of concepts 
and mathematical treatments other than those of molecu-
lar spectroscopy. The Raman spectra of crystalline and 
amorphous solids of the same chemical composition can be 
significantly different, primarily because of the presence or 
absence of spatial order and long-range translational sym-
metry, respectively. Amorphous solids can be thought of as 
a collection of formula units of the same chemical composi-
tion, but with varying bond angles and lengths depending 
upon chemical bond interactions with nearest neighbors. 
There is no order to their arrangement in space. Conse-
quently, one does not observe the narrow bands familiar 
to us in molecular spectroscopy from amorphous solids. 
The distribution of formula units with varying bond angles 
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and lengths produces a distribution of 
states of slightly varying vibrational 
energies. It may be helpful to think 
of this distribution of atomic and 
chemical bonding arrangements in the 
amorphous solid as analogous to the 
distribution of vibrational energy states 
in liquid water because of the presence 
of hydrogen bonding.

The spectroscopic selection rules 
for solid-state and molecular spectros-
copy require making some important 
distinctions regarding symmetry. The 
number of Raman and infrared active 
modes of a crystal depends upon the 
space group symmetry of the crystal 
whereas the spectroscopically active 
vibrational modes of a molecule are 
determined by its point group. The 
existence of a crystal lattice of repeat-
ing unit cells allows the propagation 
of lattice vibrational waves (also called 
phonons) that originate in the repeti-
tive and systematic vibrational motions 
of the crystal’s atoms whereas the vi-
brational modes of molecules are local 
and not coupled to those of neighbor-
ing molecules. It is the launching of a 
lattice vibrational wave or phonon by 
the incident photon that leads to the 
scattering of a Raman photon by the 
crystal. We define a phonon as a lattice 
vibrational wave propagating through 
the crystal arising from repetitive 
atomic displacements. Furthermore, 
the phonon has the characteristics of a 
traveling wave insofar as it has a propa-
gation velocity, wavelength, wave vec-
tor, and frequency.

Structurally, crystals differ from 
amorphous solids and glasses in that 
the former possess long-range trans-
lational symmetry whereas the latter 
lack any spatial order. The Raman 
spectra obtained from quartz (crys-
talline and fused) and a glass micro-
scope slide (See Figure 1) very clearly 
demonstrate the importance of spatial 
order. The quartz samples are of the 
same chemical composition but one is 
crystalline whereas the fused quartz 
is a glass with no long-range transla-
tional symmetry. The Raman spec-
trum of crystalline quartz consists 
of sharp and mostly narrow bands 
whereas that of the fused quartz man-
ifests very broad peaks with widths of 

up to several hundred wavenumbers. 
One might incorrectly conclude from 
the spectra that the chemical compo-
sitions of these two solids were dif-
ferent. However, they are not and it is 
only their solid-state structures that 
differ, thereby producing the dramatic 
differences in the spectra. The chemi-
cal composition of the microscope 
slide is different from that of quartz, 
but like the fused quartz it has a glass 
solid-state structure with no long-
range translational symmetry. Conse-
quently, its Raman spectrum is simi-
lar to that of the fused quartz insofar 
as it consists of very broad bands.

Amorphicity can be induced in 
crystalline solids through ion bom-
bardment, which is also known as ion 
implantation when used in semicon-
ductor fabrication. Dopants are placed 
at specific depths in semiconductors 
through the process of ion implanta-
tion by carefully controlling the dop-
ant flux and impact energy. Atoms are 
dislodged from their positions in the 
host crystal lattice as a result of this 
ion bombardment. Consequently, the 
semiconductor’s crystal lattice is bro-
ken and the long-range translational 
symmetry is disrupted. The extent of 
damage to the crystal lattice is deter-
mined by the mass, energy, and flux 
of the dopant being implanted; for 
example, a heavier dopant mass and 
higher flux will induce greater dam-
age to the crystal lattice. The semicon-
ductor must be annealed following ion 
implantation because of the damage 
done to the crystal lattice. The heat 
treatment restores crystallinity and 
thereby activates the semiconductor 
device.

Raman spectra of single crystal and 
ion-implanted Si obtained from differ-
ent locations on the same sample are 
shown in Figure 2. The Raman spec-
trum of single-crystal Si consists of 
one triply degenerate optical phonon 
at 520 cm-1 along with much weaker 
second-order transverse acoustic 
and optical modes that appear at ap-
proximately 305 cm-1 and 975 cm-1, 
respectively. The selection rules for 
first-order Raman scattering from 
crystalline solids dictate that only 
those optical phonons at the Brillouin 
zone center are Raman active. (We 
explain this rule later in this article.) 
Consequently, the first-order Raman 
band at 520 cm-1 is very narrow with 
a full width at half maximum of only 
4 cm-1. This particular Si sample was 
implanted with a high dose of ar-
senic, a much heavier element than 
the other common dopants boron or 
phosphorus, and so the crystalline lat-
tice within the first several hundred 
nanometers of the surface has been 
severely damaged and amorphized. 
The Raman spectrum of the arsenic-
implanted Si consists of very broad 
bands below 550 cm-1. The reason 
for the detection of Raman scatter-
ing over this broad region is that the 
Raman selection rule for crystals re-
stricting Raman scattering to phonons 
at the Brillouin zone center no longer 
holds in amorphous Si and all of the 
phonons from Brillouin zone center 
to edge are now sampled. The Raman 
spectrum of amorphous Si looks very 
much like the calculated populations 
of phonon energy states within the 
first Brillouin zone of crystalline Si.

The purpose and goal of this in-
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Figure 1: Raman spectra of crystalline and fused quartz and a glass microscope slide.
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stallment of “Molecular Spectroscopy 
Workbench” is to help readers un-
derstand the underlying physics that 
produce such different Raman spectra 

in crystalline and amorphous solids. 
We need to understand concepts such 
as wave vector, reciprocal space, and 
the Brillouin zone to accomplish that 

goal. Therefore, we will explain each 
of these topics and finally bring them 
all together, leading to the conclusion 
that in a crystal only those phonons at 
the Brillouin zone center are Raman 
active. With the loss of long-range 
translational symmetry in an amor-
phous solid, the Raman selection rules 
for crystalline solids no longer hold. 
Consequently, all of the phonons of 
the Brillouin zone become Raman 
active and the Raman spectrum of 
the amorphous solid resembles the 
phonon density of states of the corre-
sponding crystal’s phonon dispersion 
curve. If after reading this article you 
would like to view a detailed lecture 
on this topic, please see the compan-
ion video on YouTube (2).

Phonons and Reciprocal Space in 
a One-Dimensional Lattice
Earlier, we defined a phonon as a 
lattice vibrational wave propagat-
ing through the crystal arising from 
repetitive and systematic atomic 
displacements. It should also be un-
derstood that these displacements are 
quantized vibrations of the atoms in 
the lattice and are traveling waves. 
The phonon has the characteristics 
of a traveling wave insofar as it has 
a propagation velocity, wavelength, 
wave vector, and frequency. It is im-
portant to note that all of the peaks 
in a Raman spectrum of a crystal-
line solid are attributed to phonons 
and not only those at low energy 
or Raman shift. P.M.A. Sherwood 
makes that point abundantly clear in 
his fine book, Vibrational Spectros-
copy of Solids: “All crystal vibrations 
involve the entire lattice and are thus 
lattice vibrations (a term sometimes 
unfortunately only applied to exter-
nal vibrations) and such vibrations 
can be considered as a wave propa-
gating through the crystal lattice” (3). 
Unlike the normal vibrational mode 
of an individual molecule, a phonon 
is a lattice vibrational wave travel-
ing through the crystal. This is why a 
mathematical treatment of the vibra-
tional motions of the crystal’s atoms 
must take into account the medium 
through which the phonon is propa-
gating.

a is the basis vector of the primitive crystal lattice

A is the basis vector of the reciprocal lattice and is equal in length to
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Figure 3: Real and reciprocal lattices of a linear monatomic crystal.
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Figure 4: Phonon dispersion curve for a linear monatomic lattice.
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Figure 2: Raman spectra of Si amorphized through ion implantation and single-crystal Si.
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We describe the phonon as a travel-
ing wave with one of its characteris-
tics, the wave vector k, defined as

=
2π
λ

∣k∣ � [1]

where λ is the phonon wavelength. 
The wave vector is in units of wave-
numbers (cm-1) because the phonon 
wavelength is in the denominator. 
Perhaps you can anticipate why a re-
ciprocal lattice with units of distance 
in the denominator (for example, 
cm-1) would be compatible with our 
treatment of phonon wave vectors in 
units of cm-1. Depictions of a direct 
linear monatomic lattice along with 
its reciprocal lattice are shown in Fig-
ure 3. Each of the dots in the linear 
crystal lattice represents an atom and 
the distance between the atoms is 
given by the letter a. A reciprocal lat-
tice can be constructed from the real 
lattice wherein the basis vector A of 
the reciprocal lattice is equal to 2π/a. 
Our reason for choosing basis vector 
increments of 2π/a rather than 1/a 
will soon become clear as we analyze a 
vibrational wave propagating through 
our one-dimensional lattice.

Let’s consider a phonon propagat-
ing through our hypothetical linear 
monatomic lattice. Without provid-
ing the derivation, we simply state 
that there is one solution for a wave 
traveling either to the right or left in a 
linear monatomic lattice. The angular 
frequency (ω) of that traveling wave or 
phonon is given by

=±2 sinf
m

ka
2

ω
½ � [2]

where f is the vibrational force 
constant, m is the atomic mass, k is 
the phonon wave vector, and a is the 
distance between the atoms. A plot 
of ω as a function of wave vector k 
is known as the phonon dispersion 
curve and is shown in Figure 4. The 
dispersion curve is repeating and 
reaches a maximum value of ω when 
k is equal to ±π/a because of the sine 
function in equation 2. Furthermore, 
the dispersion curve for a linear 
monatomic lattice is symmetric about 
the center value of 0 and is repeat-
ing beyond ±π/a. Therefore, we call 

the region between -π/a and +π/a in 
a linear monatomic lattice the first 
Brillouin zone and a k value of 0 is the 
Brillouin zone center. An important 
concept to grasp here is that because k 
is inversely related to λ, the longer the 
phonon wavelength is the closer it will 
be to the Brillouin zone center in the 
phonon dispersion curve.

Progressing in our understanding 
of phonon propagation and dispersion 
curves, we now consider vibrational 
waves in a linear diatomic lattice. 
Again without providing the deriva-
tion or the mathematical expressions, 
we state that there are two solutions 
for waves traveling either to the right 
or left in the linear diatomic lattice. 
(Recall that there was only one solu-
tion for a traveling wave in a linear 
monatomic lattice. The derivations 
and analytical expressions for vibra-
tional waves in linear monatomic and 
diatomic lattices can be found in all 
text books on solid-state physics.) A 
phonon dispersion curve for the two 
solutions of the wave equations of a 
linear diatomic lattice is shown in 
Figure 5. Note that for the acoustic 
branch solution to the linear diatomic 
lattice a maximum value of ω is 
reached when k is equal to ± π/2a as 
opposed to ±π/a for the linear mona-
tomic lattice. The lower curve is called 
the acoustic branch and is similar to 
the phonon dispersion curve for the 
linear monatomic lattice. The upper 
optical branch is so named because 
these lattice vibrational waves can be 
excited with light of infrared wave-
lengths, energies much higher than 
those of the acoustic branch, espe-
cially at the Brillouin zone center. The 

optical branch phonons are the origin 
of the bands in the Raman spectrum 
of a solid. Of course, the number of 
Raman bands is dictated by the sym-
metry of the crystal and their energies 
by the masses of the atoms and force 
constants of the chemical bonds. It is 
especially important to note in Figure 
5 that there is a range of frequencies 
for a given optical phonon with the 
maximum and minimum ω values at 
the Brillouin zone center and edge, 
respectively. The Raman bands would 
be very broad if all of those phonons 
from center to edge were sampled, and 
that is indeed the case for amorphous 
solids. The Raman intensity as a func-
tion of frequency for a given Raman 
band is related to populations of the 
phonon state as a function of wave 
vector from the Brillouin zone center 
to the edge, referred to as the phonon 
density of states. In contrast with 
amorphous solids, crystals restrict 
phonon sampling to the Brillouin 
zone center and therefore have narrow 
Raman bands as we explain in the fol-
lowing section.

The Brillouin Zone and 
Conservation of Wave Vector
Of course, the real world of crystals 
is not one-dimensional but is three-
dimensional. A detailed description 
of the construction of the Bril-
louin zone for a three-dimensional 
crystal lattice is beyond the scope 
of this article. That would involve 
a mathematical description of the 
construction of the reciprocal lat-
tice from the real lattice (also called 
a direct lattice) and the subsequent 
construction of the Wigner-Seitz 
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Figure 5: Phonon dispersion curve for a linear diatomic lattice.
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lattice from the reciprocal lattice. A 
helpful description of the construc-
tion of three-dimensional recipro-
cal lattices, Wigner-Seitz lattices 
and Brillouin zones is given in the 

excellent book by Richard Tilley 
(4). Nevertheless, we can describe 
one example to give you a sense of 
how the construction of a Brillouin 
zone is accomplished. Consider a 

face-centered cubic Bravais F crystal 
lattice in real space. The first step 
is to construct the reciprocal lattice 
of the face-centered cubic F crystal. 
Following the mathematical proce-
dure for doing so produces a body-
centered cubic I lattice. The next step 
is to construct a Wigner-Seitz cell 
from the body-centered I reciprocal 
lattice, thereby generating a trun-
cated octahedron. The Wigner-Seitz 
truncated octahedron is the shape 
of the first Brillouin zone of the real 
face-centered cubic F lattice. Depic-
tions of the face-centered cubic F 
unit cell and its corresponding first 
Brillouin zone are shown at the bot-
tom of Figure 6. The first Brillouin 
zones of a simple cubic lattice and a 
body centered cubic I lattice are also 
shown in Figure 6. The significance 
of depicting the three-dimensional 
Brillouin zone is that we have just 
made the leap from one-dimensional 
to three-dimensional reciprocal 
space, which prepares us for the typi-
cal phonon dispersion curves found 
in the literature. Phonon dispersion 
curves generally plot the frequency of 
the phonon from the Brillouin zone 
center to the various crystal faces and 
points within the first Brillouin zone. 
You can find examples of the phonon 
dispersion curves and correspond-
ing phonon density of states plots 
of various solids in the companion 
video lecture to this installment on 
YouTube (2).

Having developed our understand-
ing of the Brillouin zone and its basis 
in reciprocal space, we relate it to the 
wave vector in Raman scattering from 
a crystalline solid. Energy, wave vec-
tor, and momentum are conserved 
in the Raman scattering process 
involving real crystals, which are 
anharmonic. Therefore, the incident 
radiation transmits momentum to the 
crystal through the creation of a lat-
tice vibrational wave or phonon. The 
momentum of the incident photon 
is equal to ħki and that of the newly 
created phonon is equal to ħq, where 
ħ is Planck’s constant divided by 2π 
and ki and q are the wave vectors of 
the incident photon and phonon, re-
spectively. A wave vector diagram of 
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Figure 7: Raman scattering and conservation of wave vector in a crystal. The wave vector of the 
phonon is given by q and those of the incident and Raman scattered photons are given by ki and ks, 
respectively.
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Figure 6: Real lattices of cubic crystals and their corresponding first Brillouin zones.
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Raman scattering in a crystal is shown 
in Figure 7. The conservation of the 
wave vector is implicit in the diagram, 
which shows the dependence of the 
direction at which the Raman scat-
tered light is collected on the direction 
of phonon propagation. Of course, 
Raman scattering occurs in all direc-
tions. However, the angle with respect 
to the incident light at which one col-
lects the Raman signal determines the 
propagation direction of the phonon 
that is being sampled. The angle of 
phonon propagation is one-half that 
of the angle at which Raman scatter-
ing is collected. This relationship is 
important because in some uniaxial 
and biaxial crystals the energies of 
certain phonons can vary depending 
upon the direction of phonon propa-
gation in the crystal lattice. Practi-
cally, that means that the Raman band 
position can vary depending upon 
the orientation of a single crystal with 
respect to the direction and polariza-
tion of the incident light and the angle 
at which the Raman scattered light is 
collected. This phenomenon is known 
as phonon directional dispersion, and 
the variation of Raman band position 
is quite significant in some ferroelec-
tric metal oxides.

Creating a vector diagram for the 
wave vector equation shown in Fig-
ure 7 and solving for q gives us the 
expression

= −+q2 2kiks cos θki
2 ks

2 � [3]

where ki and ks are the wave vectors 
of the incident photon and the Raman 
scattered photon, respectively. Raman 
scattering is generally performed with 
visible laser light. Assuming incident 
blue-green laser light of approximately 
20,000 cm-1, a phonon of several 
hundred wavenumbers, and a Raman 
scattered photon also in the visible 
region, we make the approximation 
that ki ≈ ks. Consequently, equation 3 
yields q ≈ 2ki for the 180° backscatter-
ing configuration. Substituting 2π/λ 
for ki given by equation 1 yields

=q 4πν~2ki= = =
2(2π)
λ

4πν
c

� [4]

Where c is the speed of light and λ, 

ν, and are the wavelength, frequency 
and wavenumber of the incident laser 
light, respectively. Applying the laser 
light wavenumber of approximately 
20,000 cm-1 in equation 4, we obtain a 
value for the phonon wave vector of

=q 4π(20,000 cm–1) 2.5 × 105 cm–12ki = = �[5]

Now here is where we make the 
connection between the wave vector 
of the phonon to the Brillouin zone of 
the crystal through which it is propa-
gating. We calculate the k value at the 
Brillouin zone edge (BZE), which is 
π/a (see Figure 3), where a is equal to 
the real lattice spacing. Let us assume 
a lattice spacing of 3 Å = 3 × 10-8 cm 
so that

π
3 × 10–8 cm

kBZE 1 × 108 cm–1= = � [6]

That is a difference of three orders 
of magnitude between the k value of 
the Brillouin zone edge and the wave 
vector of the phonon that we generate 
because of the wavelength of the laser 
light in our measurement. Therefore, 
only the Raman scattering from pho-
nons of a very long wavelength, equal 
to several thousand atomic spacings, 
and small k value near the Brillouin 
zone center out to 2.5 × 105 cm-1 will 
be probed because of the requirement 
that wave vector and momentum be 
conserved. Furthermore, the slope 
of the phonon dispersion curve at 
the Brillouin zone center is close to 

0 and the frequency ω of the phonon 
does not vary much in that region. 
It is this restriction of sampling only 
those phonons near the Brillouin 
zone center that results in the Raman 
bands from crystalline solids being 
so narrow.

The diagram of the two dimen-
sional reciprocal lattice in Figure 8 
should help you get a sense of the re-
stricted Raman sampling region near 
the Brillouin zone center. The region 
from the circle around the Brillouin 
zone center to the edge will have a 
distribution of phonon energy states 
as indicated in the phonon dispersion 
curve for any given solid. However, 
those phonons will be inaccessible 
in Raman measurements of crystals 
when using visible excitation because 
of the requirement to conserve wave 
vector and momentum. Remember 
that k = 2π/λ so that k increases with 
decreasing λ. We would need much 
shorter excitation wavelengths than 
those in the visible region of the 
spectrum to probe phonons beyond 
the Brillouin zone center out to the 
Brillouin zone edge at 108 cm-1. The 
instructive publication by Kettle and 
Norrby titled The Brillouin Zone – 
An Interface between Spectroscopy 
and Crystallography should be con-
sulted for further information on this 
topic (5).

Loss of Translational Symmetry
Our discussion of reciprocal space 

Brillouin zone edge

Brillouin zone center 
and Raman sampling 
region

Figure 8: The Brillouin zone of a two-dimensional reciprocal lattice. Raman scattering excited with 
visible laser light will be generated only from the region very near the Brillouin zone center.
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and the Brillouin zone led to our treatment of the con-
servation of wave vector and momentum in conjunction 
with the Raman scattering of crystals. The existence 
of long-range translational symmetry in the medium 
through which the phonons propagate was essential to 
our treatment. However, what if there is no crystal lat-
tice and the solid is amorphous or a glass? In an amor-
phous solid the observed Raman bands are no longer 
associated with traveling waves or wave vectors and are 
technically therefore no longer phonons. “In an amor-
phous solid, the vibrational modes are no longer plane 
waves (and k has no meaning), but we will continue to 
use ‘phonons’ as a convenient abbreviation for the vibra-
tional elementary excitations of the solid” (6). All of the 
things discussed with regard to reciprocal lattice, Bril-
louin zone, and conservation of wave vector in a lattice 
no longer apply. There is neither a real nor reciprocal 
lattice in an amorphous solid. One detects scattering 
from local vibrational modes. The term “phonons,” 
as defined as lattice vibrational waves, is still used for 
convenience in describing the vibrational modes of 
amorphous solids or glasses because the Raman spec-
trum so closely resembles the phonon density of states. 
One might say that in an amorphous solid the entire 
Brillouin zone is now sampled. “In an amorphous solid, 
contributions from the entire phonon density of states 
appear in the first-order infrared and Raman spectra” 
(6). The short-range order and distribution of chemical 
bond interactions are apparent in vibrational spectra. 
All of the variations in bond angles and lengths in the 
formula units of the solid manifest themselves in the 
Raman spectrum such that the bands then appear very 
broad from the contributions of all of these modes.

The Raman spectrum of an amorphous solid resembles 
the phonon density of states for the crystalline form of the 
material. It is for that reason that it is stated that the entire 
Brillouin zone and not just the center is being sampled in 
the Raman spectrum of an amorphous or glassy solid. The 
1971 publication by Smith and coworkers (7) demonstrates 
the good agreement between the Raman spectrum of 
amorphous Si and the calculated phonon density of states 
of crystalline Si. Very broad bands appear in the first order 
Raman spectra of amorphous solids because of the absence 
of long-range translational symmetry and a corresponding 
reciprocal lattice.

Conclusion
Energy and momentum are conserved in the Raman 
scattering process involving real crystals, which are an-
harmonic. Therefore, the incident radiation transmits 
momentum to the crystal through the creation of a lattice 
vibrational wave or phonon. Only phonons of a very long 
wavelength, equal to several thousand atomic spacings, and 
small k value near the Brillouin zone center are probed. 
The slope of the phonon dispersion curve at the Brillouin 
zone center is close to 0 and the frequency ω of the phonon 
does not vary much in that region. It is this restriction of 
sampling only those phonons near the Brillouin zone cen-
ter that results in the Raman bands from crystalline solids 
being so narrow. The term “phonons,” as defined as lattice 
vibrational waves, is still used for convenience in describ-
ing the vibrational modes of an amorphous solid because 
the Raman spectrum so closely resembles the phonon den-
sity of states. One might say that the entire Brillouin zone 
is now sampled in an amorphous solid.
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